Федеральное Государственное Бюджетное Образовательное Учреждение
Высшего Образования
Уфимский Государственный Авиационный Технический Университет


Что такое ?

Институт инженеров электротехники и электроники — IEEE (англ. Institute of Electrical and Electronics Engineers) (I triple E — «Ай трипл и») — международная некоммерческая ассоциация специалистов в области техники, мировой лидер в области разработки стандартов по радиоэлектронике, электротехнике и аппаратному обеспечению вычислительных систем и сетей

Эта общественная некоммерческая ассоциация профессионалов появилась в 1963 году, в результате слияния Института радиотехников (англ. Institute of Radio Engineers, IRE), созданного в 1912 году, и Американского института инженеров-электриков (англ. American Institute of Electrical Engineers, AIEE), созданного в 1884 году.

Главная цель IEEE — информационная и материальная поддержка специалистов для организации и развития научной деятельности в электротехнике, электронике, компьютерной технике и информатике, приложение их результатов для пользы общества, а также профессиональный рост членов IEEE.

IEEE, объединяя более 400 000 индивидуальных членов из 170 стран (в том числе более 100 000 студентов), издаёт третью часть мировой технической литературы, касающейся применения радиоэлектроники, компьютеров, систем управления, электротехники, в том числе (январь 2011 года) 122 реферируемых научных журнала и 36 отраслевых журналов для специалистов, проводит в год более 300 крупных конференций. Ассоциация принимала участие в разработке около 900 действующих стандартов.



Что такое ?

Wi-Fi — технология беспроводной локальной сети с устройствами на основе стандартов IEEE 802.11. Логотип Wi-Fi является торговой маркой Wi-Fi Alliance. Под аббревиатурой Wi-Fi (от английского словосочетания Wireless Fidelitys, которое можно дословно перевести как «беспроводная точность») в настоящее время развивается целое семейство стандартов передачи цифровых потоков данных по радиоканалам. Wi-Fi работает в безлицензионном частотном диапазоне ISM (2402-2480 МГц).

Как уже было сказано, Wi-Fi - технология передачи данных по радиоканалу. Принцип действия Wi-Fi заключается в следующем. Адаптер Wi-Fi преобразует поток данных в электрический радиосигнал и передает его через антенну. Маршрутизатор, в свою очередь, получает информацию из сети Интернет и переводит ее в радиосигнал, который затем передается беспроводным адаптером в компьютер. Для работы Wi-Fi необходимо соответствующее оборудование беспроводной связи. Все оборудование делится на две группы: точка доступа и беспроводной роутер.

Точка беспроводного доступа (англ. Wireless Access Point, WAP) — это беспроводная базовая станция, предназначенная для обеспечения беспроводного доступа к уже существующей сети (беспроводной или проводной) или создания новой беспроводной сети.

Объединение компьютеров в проводную сеть обычно требует прокладки множества кабелей через стены и потолки. Также проводные сети накладывают определённые ограничения на расположение устройств в пространстве. Этих недостатков лишены беспроводные сети: можно добавлять компьютеры и прочие беспроводные устройства с минимальными физическими, временными и материальными затратами. Для передачи информации беспроводные точки доступа используют радиоволны из спектра частот, определённых стандартом IEEE 802.11.

Чаще всего беспроводные точки доступа используются для предоставления доступа мобильным устройствам (ноутбуки, принтеры и т. д.) к стационарной локальной сети.

Также беспроводные точки доступа часто используются для создания так называемых «горячих точек» — областей, в пределах которых клиенту предоставляется, как правило, бесплатный доступ к сети Интернет. Обычно такие точки находятся в библиотеках, аэропортах, уличных кафе крупных городов.

В последнее время наблюдается повышение интереса к беспроводным точкам доступа при создании домашних сетей. Для создания такой сети в пределах одной квартиры достаточно одной точки доступа. Возможно, этого будет достаточно для включения в сеть и соседей прилегающих квартир. Для включения в сеть квартиры через одну, определенно, потребуется ещё одна точка доступа, которая будет служить ретранслятором сигнала, ослабевшего вследствие прохождения через несущую стену.




IEEE 802.11

IEEE 802.11 — набор стандартов связи для коммуникации в беспроводной локальной сетевой зоне частотных диапазонов 0,9; 2,4; 3,6; 5 и 60 ГГц.
Пользователям более известен по названию Wi-Fi, фактически являющемуся брендом, предложенным и продвигаемым организацией Wi-Fi Alliance. Получил широкое распространение благодаря развитию мобильных электронно-вычислительных устройств: КПК и ноутбуков.

Изначально стандарт IEEE 802.11 предполагал возможность передачи данных по радиоканалу на скорости не более 1 Мбит/с и, опционально, на скорости 2 Мбит/с. Один из первых высокоскоростных стандартов беспроводных сетей — IEEE 802.11a — определяет скорость передачи уже до 54 Мбит/с брутто. Рабочий диапазон стандарта — 5 ГГц.

Вопреки своему названию, принятый в 1999 году стандарт IEEE 802.11b не является продолжением стандарта 802.11a, поскольку в них используются различные технологии: DSSS (точнее, его улучшенная версия HR-DSSS) в 802.11b против OFDM в 802.11a. Стандарт предусматривает использование нелицензируемого диапазона частот 2,4 ГГц. Скорость передачи — до 11 Мбит/с.

Продукты стандарта IEEE 802.11b, поставляемые разными изготовителями, тестируются на совместимость и сертифицируются организацией Wireless Ethernet Compatibility Alliance (WECA), которая в настоящее время больше известна под названием Wi-Fi Alliance. Совместимые беспроводные продукты, прошедшие испытания по программе «Альянса Wi-Fi», могут быть маркированы знаком Wi-Fi.

Долгое время IEEE 802.11b был распространённым стандартом, на базе которого было построено большинство беспроводных локальных сетей. Сейчас его место занял стандарт IEEE 802.11n, постепенно вытесняемый высокоскоростным IEEE 802.11ac.

Проект стандарта IEEE 802.11g был утверждён в октябре 2002 года. Этот стандарт предусматривает использование диапазона частот 2,4 ГГц, обеспечивая скорость соединения до 54 Мбит/с (брутто) и превосходя, таким образом, стандарт IEEE 802.11b, который обеспечивает скорость соединения до 11 Мбит/с. Кроме того, он гарантирует обратную совместимость со стандартом 802.11b. Обратная совместимость стандарта IEEE 802.11g может быть реализована в режиме модуляции DSSS, и тогда скорость соединения будет ограничена одиннадцатью мегабитами в секунду либо в режиме модуляции OFDM, при котором скорость может достигать 54 Мбит/с. Таким образом, данный стандарт является наиболее приемлемым при построении беспроводных сетей

IEEE 802.11b

Стандарт IEEE 802.11b был принят в 1999 году и сегодня является наиболее распространенным в России. Этот стандарт фактически представляет собой расширение базового стандарта IEEE 802.11, который предполагал возможность передачи данных по радиоканалу на скорости 1 Мбит/с и опционально на скорости 2 Мбит/с, а в стандарте IEEE 802.11b были уже добавлены более высокие скорости передачи - 5,5 и 11 Мбит/с. Стандартом IEEE 802.11b предусмотрено использование частотного диапазона от 2,4 до 2,4835 ГГц, который предназначен для безлицензионного использования в промышленности, науке и медицине (Industry, Science and Medicine, ISM).

На физическом уровне стандартом IEEE 802.11 предусмотрено два типа радиоканалов - DSSS и FHSS, различающиеся способом модуляции, но использующие одну и ту же технологию расширения спектра.

Технология расширения спектра

Основной принцип технологии расширения спектра (Spread Spectrum, SS) заключается в том, чтобы от узкополосного спектра сигнала, возникающего, перейти к широкополосному спектру, что позволяет значительно повысить помехоустойчивость передаваемых данных.

При потенциальном кодировании информационные биты 0 и 1 передаются прямоугольными импульсами напряжений.

Чем меньше длительность импульса, тем больший спектральный диапазон занимает такой сигнал. Чтобы повысить помехоустойчивость передаваемого сигнала (то есть увеличить вероятность безошибочного распознавания сигнала на приёмной стороне в условиях шума), можно воспользоваться методом перехода к широкополосному сигналу, добавляя избыточность в исходный сигнал. Для этого в каждый передаваемый информационный бит встраивают определенный код, состоящий из последовательности так называемых чипов

Информационный бит, представляемый прямоугольным импульсом, разбивается на последовательность более мелких импульсов-чипов. В результате спектр сигнала значительно расширяется, поскольку ширину спектра можно с достаточной степенью точности считать обратно пропорциональной длительности одного чипа. Такие кодовые последовательности часто называют шумоподобными кодами. Наряду с расширением спектра сигнала, уменьшается и спектральная плотность энергии, так что энергия сигнала как бы размазывается по всему спектру, а результирующий сигнал становится шумоподобным в том смысле, что его теперь трудно отличить от естественного шума.

Одна из наиболее известных (но не единственная) таких последовательностей - код Баркера длиной в 11 чипов: 11100010010. Коды Баркера обладают наилучшими среди известных псевдослучайных последовательностей свойствами шумоподобности, что и обусловило их широкое применение. Для передачи единичного и нулевого символов сообщения используются, соответственно, прямая и инверсная последовательности Баркера.

В приёмнике полученный сигнал умножается на код Баркера, в результате чего он становится узкополосным, поэтому его фильтруют в узкой полосе частот, равной удвоенной скорости передачи. Любая помеха, попадающая в полосу исходного широкополосного сигнала, после умножения на код Баркера, наоборот, становится широкополосной, а в узкую информационную полосу попадает лишь часть помехи, по мощности примерно в 11 раз меньшая, чем помеха, действующая на входе приёмника. Основной смысл использования кода Баркера заключается в том, чтобы гарантировать высокую степень достоверности принимаемой информации и при этом передавать сигнал практически на уровне помех.

Модуляция сигнала

Как известно, радиоволны приобретают способность переносить информацию в том случае, если они определённым образом модулируются. Необходимо также, чтобы модуляция синусоидального несущего сигнала соответствовала требуемой последовательности информационных битов. Существует три основных типа модуляции: амплитудная, частотная и фазовая. В стандарте IEEE 802.11 для передачи сигналов используют различные виды фазовой модуляции.

Различают два вида фазовой модуляции: собственно фазовую и относительную фазовую модуляцию. При фазовой модуляции (Phase Shift Key, PSK) для передачи логических нулей и единиц используют сигналы одной и той же частоты и амплитуды, но смещённые относительно друг друга по фазе. Например, логический нуль передается синфазным сигналом, а единица - сигналом, который сдвинут по фазе на 180°


Если изменение фазы может принимать всего два значения, то говорят о двоичной фазовой модуляции (Binary Phase Shift Key, BPSK)

Изменение фазы может иметь и более двух значений, например четыре - 0, 90, 180 и 270°. В этом случае говорят о так называемой квадратурной фазовой модуляции (Quadrature Phase Shift Key, QPSK)

Отличительной особенностью квадратурной фазовой модуляции является наличие четырех дискретных состояний сигнала, отвечающих различным фазам. Это позволяет закодировать в одном дискретном состоянии последовательность двух информационных бит (так называемый дибит). Действительно, последовательность двух битов может иметь всего четыре различные комбинации: 00, 01, 10 и 11, а значит, ровно в два раза повышается и скорость передачи данных.

Недостатком фазовой модуляции является то, что при декодировании сигнала приёмник должен определять абсолютное значение фазы сигнала, так как в фазовой модуляции информация кодируется именно абсолютным значением фазы сигнала. Следовательно, необходимо каким-то способом синхронизировать сигнал передатчика с эталонным сигналом приёмника (по этой причине фазовая модуляция получила название синхронной).

Реализация синхронной передачи достаточно сложна, поэтому более широкое распространение получила разновидность фазовой модуляции, называемая относительной фазовой модуляцией (Differential Phase Shift Keying, DPSK). При относительной фазовой модуляции кодирование информации происходит за счёт сдвига фазы по отношению к предыдущему состоянию сигнала. Фактически приёмник должен улавливать не абсолютное значение фазы принимаемого сигнала, а лишь изменение этой фазы, то есть информация кодируется изменением фазы. Естественно, такая модуляция уже не является синхронной и по этой причине проще реализуется. Во всём остальном DPSK-модуляция не отличается от PSK-модуляции.

Как уже отмечалось, фазовая модуляция используется в протоколе IEEE 802.11 для кодирования данных. При передаче данных на скорости 1 Мбит/с применяется двоичная относительная фазовая модуляция (DBPSK). При этом сам информационный единичный бит передается 11-чиповой последовательностью Баркера, а нулевой бит - инверсной последовательностью Баркера. Соответственно, относительная фазовая модуляция применяется именно к отдельным чипам последовательности.

Учитывая, что ширина спектра прямоугольного импульса обратно пропорциональна его длительности (а точнее, 2/T), нетрудно посчитать, что при информационной скорости 1 Мбит/с скорость следования отдельных чипов последовательности Баркера составит 11 х 106 чип/с, а ширина спектра такого сигнала - 22 МГц, так как длительность одного чипа составляет 1/11 мкс.

Информационная скорость 1 Мбит/с является обязательной в стандарте IEEE 802.11 (Basic Access Rate), но опционально возможна передача и на скорости 2 Мбит/с (Enhanced Access Rate). Для передачи данных на такой скорости тоже используется относительная фазовая модуляция, но уже квадратурная (DQPSK), что позволяет в два раза повысить информационную скорость передачи. При этом ширина самого спектра остаётся прежней, - 22 МГц.

В дополнение к стандарту IEEE 802.11 в стандарте 802.11b, кроме скоростей 1 и 2 Мбит/с, обязательными являются также скорости 5,5 и 11 Мбит/с. Для работы на таких скоростях используется уже несколько иной способ расширения спектра. В данном случае вместо шумоподобных последовательностей Баркера, используются комплементарные коды (Complementary Code Keying, CCK).

Если говорить в общих чертах, то использование CCK-кодов позволяет кодировать 8 битов на один символ при скорости 11 Мбит/с и 4 бита на символ при скорости 5,5 Мбит/с.. Сами кодовые последовательности являются 8-чиповыми, и при скорости передачи 11 Мбит/с кодирование 8 битов на символ соответствует символьной скорости 1,385 х 106 символов в секунду (11/8 = 1,385). Аналогичная символьная скорость используется и при скорости передачи 5,5 Мбит/с, так как в данном случае в одном символе кодируется только 4 бита.

Говоря о скоростях передачи 5,5 Мбит/с и 11 Мбит/с, отметим, что стандартом 802.11b опционально предусмотрен и альтернативный метод кодирования - двоичное символьное свёрточное кодирование (Packet Binary Convolutional Coding, PBCC), но рассмотрение этого метода мы отложим до описания стандарта IEEE 802.11g, где данный способ кодирования также находит применение.

IEEE 802.11a

Рассмотренный ранее стандарт 802.11b обеспечивает максимальную скорость передачи данных до 11 Мбит/с в частотном диапазоне 2,4 ГГц (от 2,4 до 2,4835 ГГц). Этот диапазон не требует лицензирования и зарезервирован для использования в промышленности, науке и медицине (ISM), однако при использовании технологии расширения спектра DSSS на частотах около 2,4 ГГц могут возникать проблемы из-за помех, порождаемых другими бытовыми устройствами, в частности микроволновыми печами и радиотелефонами. Кроме того, современные приложения и объёмы передаваемых по сети данных нередко требуют большей пропускной способности, чем может предложить стандарт 802.11b.

Выход из создавшегося положения предлагает стандарт 802.11а, рекомендующий передачу данных со скоростью до 54 Мбит/сек в частотном диапазоне 5 ГГц (от 5,15 до 5,350 ГГц и от 5,725 до 5,825 ГГц). В США данный диапазон именуют диапазоном нелицензионной национальной информационной инфраструктуры (Unlicensed National Information Infrastructure, UNII).

В соответствии с правилами FCC частотный диапазон UNII разбит на три 100-мегагерцевых поддиапазона, различающихся ограничениями по максимальной мощности излучения. Низший диапазон (от 5,15 до 5,25 ГГц) предусматривает мощность всего 50 мВт, средний диапазон (от 5,25 до 5,35 ГГц) - 250 мВт, а верхний диапазон (от 5,725 до 5,825 ГГц) - 1 Вт. Использование трёх частотных поддиапазонов с общей шириной 300 МГц делает стандарт 802.11а самым, так сказать, широкополосным из семейства стандартов 802.11 и позволяет разбить весь частотный диапазон на 12 каналов, каждый из которых имеет ширину 20 МГц, восемь из которых лежат в 200-мегагерцевом диапазоне от 5,15 до 5,35 ГГц, а остальные четыре канала - в 100-мегагерцевом диапазоне от 5,725 до 5,825 ГГц (рис. 5). При этом четыре верхних частотных каналов, предусматривающие наибольшую мощность передачи, используются преимущественно для передачи сигналов вне помещений.

Предусмотренная протоколом 802.11а ширина канала 20 МГц вполне достаточна для организации высокоскоростной передачи. Использование же частот свыше 5 ГГц и ограничение мощности передачи приводят к возникновению ряда проблем при попытке организовать высокоскоростную передачу данных, и это необходимо учитывать при выборе метода кодирования данных. С увеличением частоты передаваемого сигнала увеличивается и его затухание. Так, при распространении сигнала в открытом пространстве с частотой 2,4 ГГц он ослабевает на 60 дБ при удалении от источника на 10 м. Если же частота равна 5 ГГц, ослабевание сигнала при удалении на 10 м составит уже 66 дБ. Учитывая, что правила FCC диктуют использование существенно меньшей мощности излучения в нижних поддиапазонах UNII, чем в диапазоне ISM 2,4 ГГц, становится понятно, что использование более высоких частот в протоколе 802.11а приводит к несколько меньшему радиусу действия сети, чем в протоколе 802.11b.

Второй важный момент, который необходимо учитывать при использовании высокочастотных сигналов с большой частотной шириной канала, связан с возникновением эффекта многолучевой интерференции: в результате многократных отражений один и тот же сигнал может попадать в приёмник различными путями. Но различные пути распространения имеют и разные длины, а потому для различных путей распространения ослабление сигнала будет неодинаковым. Следовательно, в точке приёма результирующий сигнал представляет собой интерференцию многих сигналов с различными амплитудами и смещёнными относительно друг друга по времени, что эквивалентно сложению сигналов с разными фазами.

Следствием многолучевой интерференции является искажение принимаемого сигнала. Многолучевая интерференция присуща любому типу сигналов, но особенно негативно она сказывается на широкополосных сигналах. Дело в том, что при использовании широкополосного сигнала в результате интерференции определённые частоты складываются синфазно, что приводит к увеличению сигнала, а некоторые, наоборот, - противофазно, вызывая ослабление сигнала на данной частоте

Говоря о многолучевой интерференции, возникающей при передаче сигналов, различают два крайних случая. В первом случае максимальная задержка между различными сигналами не превосходит времени длительности одного символа, и интерференция возникает в пределах одного передаваемого символа. Во втором случае максимальная задержка между различными сигналами больше длительности одного символа, а в результате интерференции складываются сигналы, представляющие разные символы, и возникает так называемая межсимвольная интерференция (Inter Symbol Interference, ISI)

Наиболее отрицательно на искажении сигнала сказывается межсимвольная интерференция. Поскольку символ - это дискретное состояние сигнала, характеризующееся значениями частоты несущей, амплитуды и фазы, то для различных символов меняются амплитуда и фаза сигнала, поэтому восстановить исходный сигнал крайне сложно.

Чтобы избежать, а точнее, частично компенсировать эффект многолучевого распространения, используются частотные эквалайзеры, однако, по мере роста скорости передачи данных либо за счёт увеличения символьной скорости, либо за счёт усложнения схемы кодирования, эффективность использования эквалайзеров падает.

В стандарте 802.11b с максимальной скоростью передачи 11 Мбит/с при использовании CCK-кодов и QDPSK-кодирования применение схем компенсации межсимвольной интерференции вполне успешно справляется с возложенной на них задачей, но при более высоких скоростях, как в протоколе 802.11а, такой подход становится неприемлем. Поэтому в стандарте 802.11а используется принципиально иной метод кодирования данных, который состоит в том, что поток передаваемых данных распределяется по множеству частотных подканалов и передача ведётся параллельно на всех этих подканалах. При этом высокая скорость передачи достигается именно за счёт одновременной передачи данных по всем каналам, а скорость передачи в отдельном подканале может быть и не высокой

Поскольку в каждом из частотных подканалов скорость передачи данных можно сделать не слишком высокой, это создает предпосылки для эффективного подавления межсимвольной интерференции.

При частотном разделении каналов необходимо, чтобы ширина отдельного канала была, с одной стороны, достаточно узкой для минимизации искажения сигнала в пределах отдельного канала, а с другой - достаточно широкой для обеспечения требуемой скорости передачи. Кроме того, для экономного использования всей полосы канала, разделяемого на подканалы, желательно как можно более плотно расположить частотные подканалы, но при этом избежать межканальной интерференции, чтобы обеспечить полную независимость каналов друг от друга. Частотные каналы, удовлетворяющие перечисленным требованиям, называются ортогональными. Несущие сигналы всех частотных подканалов (а точнее, функции, описывающие эти сигналы) ортогональны друг другу.

Ортогональность несущих сигналов можно обеспечить в том случае, если за время длительности одного символа несущий сигнал будет совершать целое число колебаний. Примеры нескольких несущих ортогональных колебаний представлены на рисунке.

При этом важно, что хотя сами частотные подканалы могут и перекрывать друг друга, однако ортогональность несущих сигналов гарантирует частотную независимость каналов друг от друга, а следовательно, отсутствие межканальной интерференции

Cпособ деления широкополосного канала на ортогональные частотные подканалы называется ортогональным частотным разделением с мультиплексированием (Orthogonal Frequency Division Multiplexing, OFDM). Для его реализации в передающих устройствах используется обратное быстрое преобразование Фурье (IFFT), переводящее предварительно мультиплексированный на N-каналов сигнал из временного представления в частотное f(t) -> F(w).

В протоколе 802.11a используется обратное преобразование Фурье с окном в 64 частотных подканала. Поскольку ширина каждого из 12 каналов, определяемых в стандарте 802.11а, имеет ширину 20 МГц, получаем, что каждый ортогональный частотный подканал имеет ширину 20 МГц: 64=312,5 кГц. Однако из 64 ортогональных подканалов используются только 52, причем 48 подканалов используются для передачи данных (Data Tones), а остальные - для передачи служебной информации (Pilot Тones).

Как уже отмечалось, одним из ключевых преимуществ метода OFDM является сочетание высокой скорости передачи с эффективным противостоянием многолучевому распространению. Если говорить точнее, то сама по себе технология OFDM не устраняет многолучевого распространения, но создаёт предпосылки для устранения эффекта межсимвольной интерференции. Дело в том, что неотъемлемой частью технологии OFDM является понятие охранного интервала (Guard Interval, GI) - это циклическое повторение окончания символа, пристраиваемое вначале символа. Охранный интервал является избыточной информацией и в этом смысле снижает полезную (информационную) скорость передачи. Эта избыточная информация добавляется к передаваемому символу в передатчике и отбрасывается при приёме символа в приёмнике, но именно она служит защитой от возникновения межсимвольной интерференции.

Наличие охранного интервала создаёт временные паузы между отдельными символами, и если длительность охранного интервала превышает максимальное время задержки сигнала в результате многолучевого распространения, то межсимвольной интерференции не возникает.

В протоколе 802.1а длительность охранного интервала составляет одну четвёртую длительности самого символа. При этом сам символ имеет длительность 3,2 мкс, а охранный интервал - 0,8 мкс. Таким образом, длительность символа вместе с охранным интервалом составляет 4 мкс.

Напомним, что в протоколе 802.11b для кодирования использовалась либо двоичная (BDPSK), либо квадратурная (QDPSK) относительная фазовая модуляция. В протоколе 802.11а используются те же методы фазовой модуляции (только не относительные). При использовании BPSK-модуляции в одном символе кодируется только один информационный бит. Соответственно при использовании QPSK-модуляции, то есть когда фаза сигнала может принимать четыре различных значения, в одном символе кодируется два информационных бита. Модуляция BPSK используется для передачи данных на скоростях 6 и 9 Мбит/с, а модуляция QPSK - на скоростях 12 и 18 Мбит/с.

Для передачи на более высоких скоростях используется квадратурная амплитудная модуляция QAM (Сalled Quadrature Amplitude Modulation). Данный тип модуляции подразумевает, что информация кодируется не только за счёт изменения фазы сигнала, но и за счёт его амплитуды. В протоколе 802.11а используется модуляция 16-QAM и 64-QAM. В первом случае имеется 16 различных состояний сигнала, что позволяет закодировать 4 бита в одном символе. Во втором случае имеется уже 64 возможных состояния сигнала, что позволяет закодировать последовательность 6 битов в одном символе. Модуляция 16-QAM применяется на скоростях 24 и 36 Мбит/с, а модуляция 64-QAM - на скоростях 48 и 54 Мбит/с.

Естественно возникает вопрос: почему при одном и том же типе модуляции возможны различные скорости передачи? Рассмотрим, к примеру, модуляцию BPSK, при которой скорость передачи данных составляет 6 или 9 Мбит/с. Время длительности одного символа вместе с охранным интервалом составляет 4 мкс. Следовательно, частота следования импульсов составит 250 кГц. Учитывая, что в каждом подканале кодируется по одному биту, а всего таких подканалов 48, получим, что общая скорость передачи составит 250 кГц х 48 каналов = 12 МГц. Однако далеко не все биты, кодируемые в символе, являются информационными. Для того чтобы обеспечить достоверность принимаемых данных, то есть иметь возможность обнаруживать и исправлять ошибки, используют избыточную информацию и так называемое свёрточное кодирование. Суть свёрточного кодирования заключается в том, что к последовательности передаваемых битов добавляются служебные биты, значения которых зависят от нескольких предыдущих переданных битов. Использование свёрточного кодирования в сочетании с алгоритмом Витерби позволяет не только обнаруживать, но и в подавляющем большинстве случаев исправлять ошибки передачи на приёмной стороне.

Не вдаваясь в подробности свёрточного кодирования, скажем лишь, что при скорости свёрточного кодирования 1/2, на каждый информационный бит добавляется один служебный (избыточность равна 2). Именно по этой причине при скорости свёрточного кодирования 1/2 информационная скорость вдвое меньше полной скорости. При скорости свёрточного кодирования 3/4 на каждые три информационных бита добавляется один служебный, поэтому в данном случае полезная (информационная) скорость составляет 3/4 от полной скорости.

Из этого следует, что при использовании одного и того же типа модуляции могут получаться разные значения информационной скорости - всё зависит от скорости свёрточного кодирования. Так, при использовании BPSK-модуляции со скоростью свёрточного кодирования 1/2 получаем информационную скорость 6 Мбит/с, а при использовании свёрточного кодирования со скоростью 3/4 - 9 Мбит/с. Аналогичным образом каждому типу модуляции соответствуют две различные скорости передачи. При этом подчеркнём, что в самом протоколе 802.11а обязательными являются только скорости 6, 12 и 24 Мбит/с, а все остальные - опциональными.

IEEE 802.11g

Стандарт 802.11g является логическим развитием 802.11b и предполагает передачу данных в том же частотном диапазоне. Кроме того, стандарт 802.11g полностью совместим с 802.11b, то есть любое устройство 802.11g должно поддерживать работу с устройствами 802.11b. В то же время, по способу кодирования 802.11g является, так сказать, гибридным, заимствуя все лучшее из стандартов 802.11b и 802.11a. Максимальная скорость передачи в стандарте 802.11g составляет 54 Мбит/с (как и в стандарте 802.11a), поэтому в то время это был наиболее перспективный стандарт беспроводной связи.

При разработке стандарта 802.11g рассматривались две несколько конкурирующие технологии: метод ортогонального частотного разделения OFDM, заимствованный из стандарта 802.11a и предложенный к рассмотрению компанией Intersil, и метод двоичного пакетного свёрточного кодирования PBCC, опционально реализованный в стандарте 802.11b и предложенный компанией Texas Instruments. В результате стандарт 802.11g содержит компромиссное решение: в качестве базовых применяются технологии OFDM и CCK, а опционально предусмотрено использование технологии PBCC. С технологиями CCK и OFDM мы уже познакомились, поэтому знакомство со стандартом 802.11g начнем с рассмотрения технологии PBCC.

В основе метода PBCC лежит так называемое свёрточное кодирование со скоростью 1/2. В любом свёрточном кодере используются запоминающие ячейки (регистры) и логические элементы XOR. Рассмотрим принцип работы свёрточного кодера на простейшем примере кодера, состоящего всего из двух запоминающих ячеек

Пусть на вход такого кодера поступает со скоростью k бит/с последовательность битов 01011100 (левый бит считается первым). В результате логических преобразований входной последовательности с помощью операций XOR каждому входному биту ставятся в соответствие два выходных бита - Y0 и Y1. Выписывая таблицу временных состояний кодера, найдем формируемые последовательности битов - Y0 и Y1. При этом предполагается, что в начальный момент, то есть когда на вход кодера поступает первый бит входной последовательности, значения запоминающих ячеек равны 0.

Отметим одну важную особенность принципа формирования выходных битов: значение каждого формируемого дибита зависит не только от входящего информационного бита, но и от двух предыдущих битов, значения которых хранятся в двух запоминающих ячейках. Таким образом, значение выходного дибита зависит от трёх состояний - значения входного бита, значения первой запоминающей ячейки и значения второй запоминающей ячейки. Такие кодеры получили название свёрточных кодеров на три состояния (K = 3) с выходной скоростью 1/2.

Главным достоинством свёрточных кодеров является помехоустойчивость формируемой ими последовательности. Дело в том, что при избыточности кодирования (вспомним, что каждому информационному биту ставится в соответствие дибит, то есть избыточность кода равна 2) даже в случае возникновения ошибок приёма (к примеру, вместо дибита 11 ошибочно принят дибит 10) исходная последовательность битов может быть безошибочно восстановлена. Для восстановления исходной последовательности битов на стороне приёмника применяется декодер Витерби.

В протоколе 802.11b и 802.11g используются свёрточные кодеры, состоящие из шести запоминающих ячеек (K = 7) со скоростью кодирования 1/2.

Дибит, формируемый в свёрточном кодере, используется в дальнейшем в качестве передаваемого символа, но предварительно этот дибит подвергается фазовой модуляции. Если скорость передачи составляет 11 Мбит/с, то применяется квадратичная фазовая модуляция QPSK. В данном случае каждому их четырёх возможных состояний дибита соответствует одна из четырёх возможных фаз. При этом в каждом символе кодируется по одному входному биту и скорость передачи битов соответствует скорости передачи символов. Если же скорость передачи составляет 5,5 Мбит/с, то используется двоичная фазовая модуляция BPSK. При этом каждый бит Y0 и Y1, формируемый свёрточным кодером, последовательно подвергается фазовой модуляции. Поскольку каждому входному биту в данном случае соответствует два выходных символа, скорость передачи битов равна половине скорости передачи символов. Поэтому, и для скорости 5,5 Мбит/с, и для скорости 11 Мбит/с символьная скорость составляет 11 х 10^6 символов/с.

Как видите, технология PBCC достаточна проста. В отличие от технологий DSSS (коды Баркера, ССК-последовательности) здесь не используется технология расширения спектра за счёт применения шумоподобных последовательностей, однако расширение спектра до стандартных 22 МГц предусмотрено и в данном случае. Для этого применяют вариации возможных сигнальных созвездий QPSK и BPSK.

Напомним, что сигнальные созвездия представляют собой геометрическое отображение возможных выходных состояний сигнала. Для QPSK-модуляции имеется четыре дискретных состояний сигнала: 00, 01, 10 и 11. Каждому из этих дибитов соответствует одна из четырёх возможных фаз несущего сигнала. Выбор одного из возможных состояний определяется комбинацией управляющих сигналов синфазного и квадратурного каналов dI и dQ, принимающих значения +1 и -1. Следовательно, каждому состоянию сигнала соответствует пара координат dI и dQ. Отображая на IQ плоскости возможные значения dI и dQ и соответствующие им дибиты, получим так называемое сигнальное созвездие. Понятно, что расположение точек на сигнальном созвездии может быть различным, то есть комбинация управляющих сигналов dI=+1 и dQ=-1 может соответствовать дибиту 00, а может - и дибиту 10. Фактически это означает, что в первом случае дибиту 00 ставится в соответствие одно значение фазы несущего сигнала, а во втором - другое. Именно этот принцип реализован в методе PBCC для расширения спектра выходного сигнала. Используется по два сигнальных созвездия QPSK и BPSK

Выбор между конкретным типом используемого созвездия задаётся управляющим сигналом S, принимающим значение 0 или 1. Этот сигнал задаётся псевдослучайной последовательностью с периодом повторения 256 бит, которая формируется из 16-битной базовой последовательности 0011001110001011. Для того чтобы из данной базовой 16-битной последовательности получить 256-битную, используют циклический сдвиг одновременно трёх первых символов. Так получают еще пятнадцать 16-битовых последовательностей, что в сумме дает одну 256-битную.

Как уже отмечалось, рассмотренный метод PBCC-кодирования опционально используется в протоколе 802.11b на скоростях 5,5 и 11 Мбит/с. Аналогично в протоколе 802.11g для скоростей передачи 5,5 и 11 Мбит/с этот способ тоже используется опционально. Вообще, учитывая совместимость протоколов 802.11b и 802.11g, технология кодирования и скорости, предусмотренные протоколом 802.11b, поддерживаются и в протоколе 802.11g. В этом плане до скорости 11 Мбит/с протоколы 802.11b и 802.11g совпадают друг с другом, за исключением того, что в протоколе 802.11g предусмотрены такие скорости, которых нет в протоколе 802.11b. Впрочем, все возможные скорости передачи мы рассмотрим позднее, а пока остановимся на применении технологии PBCC при скоростях более 11 Мбит/с.

Опционально в протоколе 802.11g технология PBCC может использоваться при скоростях передачи 22 и 33 Мбит/с. Скорость 22 Мбит/с при использовании технологии PBCC уже сейчас реализуется во многих устройствах стандарта 802.11b. При этом данную скорость передачи рассматривают как расширение стандарта, обозначая это как 802.11b+.

При скорости 22 Мбит/с, по сравнению с уже рассмотренной нами схемой PBCC, имеются два отличия. Прежде всего, используется фазовая 8-позиционная модуляция 8-PSK, то есть фаза сигнала может принимать восемь различных значений. Это позволяет в одном символе кодировать уже 3 бита и, следовательно, увеличить информационную скорость передачи. Кроме того, в схему, кроме свёрточного кодера, добавлен пунктурный кодер (Puncture). Смысл такого решения достаточно прост: избыточность свёрточного кодера равная 2 (на каждый входной бит приходятся два выходных) достаточна высока и при определённых условиях помеховой обстановки является излишней, поэтому можно уменьшить избыточность, чтобы, к примеру, каждым двум входным битам соответствовало три выходных.

Для этого можно, конечно, разработать соответствующий свёрточный кодер, но лучше добавить в схему блок, который будет просто уничтожать лишние биты. Каждый пунктурный кодер принято характеризовать матрицей (Рerforation Мatrix), выполняющей функцию шаблона для удаления лишних битов.

Допустим, что пунктурный кодер удаляет один бит из каждых четырёх входных битов, вырезая из последовательности Y0 каждый второй бит. Тогда каждым четырём входящим битам будет соответствовать три выходящих. Скорость такого кодера составляет 4:3

Если же такой кодер используется в паре со свёрточным кодером со скоростью 1/2, то общая скорость кодирования составит уже 2/3, то есть каждым двум входным битам будет соответствовать три выходных.

Поняв принцип работы пунктурного кодера, вернёмся к рассмотрению кодирования PBCC на скорости 22 Мбит/с в протоколе 802.11g. В свёрточный кодер (K = 7, R = 1/2) данные поступают со скоростью 22 Мбит/с. После добавления избыточности в свёрточном кодере биты со скоростью потока 44 Мбит/с поступают в пунктурный кодер 4:3, в котором избыточность уменьшается так, чтобы на каждые четыре входных бита приходились три выходных. Следовательно, после пунктурного кодера скорость потока составит уже 33 Мбит/с (не информационная скорость, а общая скорость с учётом добавленных избыточных битов). Полученная в результате последовательность направляется в фазовый модулятор 8-PSK, где каждые три бита упаковываются в один символ. При этом скорость передачи составит 11 Мсимвол/с, а информационная скорость - 22 Мбит/с.

IEEE 802.11n

Стандарт 802.11n включает в себя множество усовершенствований по сравнению с устройствами стандарта 802.11g. Устройства 802.11n могут работать в одном из двух диапазонов 2.4 или 5.0 ГГц.

На физическом уровне реализована усовершенствованная обработка сигнала и модуляции, добавлена возможность одновременной передачи сигнала через четыре антенны.

На канальном подуровне управления доступом к среде (MAC) реализовано более эффективное использование доступной пропускной способности. Вместе эти усовершенствования позволяют увеличить максимальную теоретическую скорость передачи данных до 600 Мбит/с – увеличение более чем в десять раз, по сравнению с 54 Мбит/с стандарта 802.11a/g (в настоящее время эти устройства уже считаются устаревшими).

В реальности, производительность беспроводной локальной сети зависит от многочисленных факторов, таких как среда передачи данных, частота радиоволн, размещение устройств и их конфигурация. При использовании устройств стандарта 802.11n, крайне важно понять, какие именно усовершенствования были реализованы в этом стандарте, на что они влияют, а также как они совмещаются и сосуществуют с сетями устаревшего стандарта 802.11a/b/g беспроводных сетей. Важно понять, какие именно дополнительные особенности стандарта 802.11n реализованы и поддерживаются в новых беспроводных устройствах.

Многоканальный вход/выход (MIMO)

Одним из основных моментов стандарта 802.11n является поддержка технологии MIMO (Multiple-Input Multiple-Output, Многоканальный вход/выход).

С помощью технологии MIMO реализована способность одновременного приема/передачи нескольких потоков данных через несколько антенн, вместо одной.

Стандарт 802.11n определяет различные антенные конфигурации "МхN", начиная с "1х1" до "4х4" (самые распространенные на сегодняшний день это конфигурации "3х3" или "2х3"). Первое число (М) определяет количество передающих антенн (T), а второе число (N) определяет количество приемных антенн (R). Например, точка доступа с двумя передающими и тремя приемными антеннами является "2х3" (или 2T3R) MIMO-устройством.

Чем больше устройство 802.11n использует антенн для одновременной работы передачи/приема, тем будет выше максимальная скорость передачи данных. Однако, само по себе использование нескольких антенн не увеличивает скорость передачи данных или расширение диапазона. Основным в устройствах стандарта 802.11n является то, что в них реализован усовершенствованный метод обработки сигнала, который и определяет алгоритм работы MIMO-устройства при использовании нескольких антенн.

Конфигурация "4х4" при использовании модуляции 64-QAM обеспечивает скорость до 600 Мбит/с, конфигурация "3х3" при использовании модуляции 64-QAM обеспечивает скорость до 450 Мбит/с, в то время как конфигурации "2х3" и "1х2" обеспечат скорость до 300 Мбит/с.

При использовании MIMO "2x2" и поддержке модуляции 256-QAM (TurboQAM) в диапазоне 2,4 ГГц максимальная скорость подключения на стандарте 802.11n может составить 400 Мбит/с.

Ширина полосы пропускания канала 40 МГц

Другой дополнительной особенностью стандарта 802.11n является увеличение ширины канала с 20 до 40 МГц.

В беспроводных сетях используются два частотных диапазона 2.4 ГГц и 5 ГГц. Беспроводные сети стандарта 802.11b/g работают на частоте 2.4 ГГц, сети стандарта 802.11a работают на частоте 5 ГГц, а сети стандарта 802.11n могут работать как на частоте 2.4 ГГц, так и на частоте 5 ГГц.

В полосе частот 2.4 ГГц для беспроводных сетей доступны 13 каналов (в некоторых странах 11) с интервалами 5 МГц между ними. Для передачи сигнала беспроводные устройства стандарта 802.11b/g используют каналы шириной 20 МГц. Беспроводное устройство стандарта 802.11b/g использует один из 13 каналов из полосы 20 МГц в пределах частоты 2.4 ГГц, но фактически задействует 5 пересекающихся каналов. Например, если точка доступа использует канал 6, то она оказывает значительные помехи на каналы 5 и 7, а также оказывает помехи на каналы 4 и 8. Когда происходит передача данных устройством, беспроводной сигнал отклоняется от центральной частоты канала +/- 11 МГц. В некоторых случаях происходит отклонение энергии радиочастоты до 30 МГц от центрального канала. Для исключения взаимных помех между каналами необходимо, чтобы их полосы отстояли друг от друга на 25 МГц. Таким образом, остается всего 3 непересекающихся канала на полосе 20 МГц: 1, 6 и 11.

Беспроводные точки доступа, работающие в полосе частот 2.4 ГГц, в пределах одной покрываемой зоны обслуживания должны избегать перекрытия каналов для обеспечения качества беспроводной сети.

Одним из основных моментов является вопрос совместимости беспроводных устройств стандарта 802.11n c устройствами 802.11a/b/g.

Большинство беспроводных локальных сетей 802.11n используют каналы 40 МГц только в диапазоне частот 5 ГГц. В сетях, использующих полосу частот 5 ГГц (802.11n), проблемы пересекающихся каналов не существует.

Устройства стандарта 802.11n могут использовать ширину канала 20 или 40 МГц в любом частотном диапазоне (2.4 или 5 ГГц). При использовании ширины канала 40 МГц (устройства 802.11n) происходит двойное увеличение пропускной способности по сравнению с шириной канала 20 МГц (устройства 802.11b/g).

В полосе частот 5 ГГц доступно 19 непересекающихся каналов, которые более пригодны для применения в устройствах стандарта 802.11n, обеспечивающих максимально возможную скорость передачи данных. Сигналы распределяются без взаимного перекрытия каналов с шириной полосы 40 МГц.

Однако, при использовании полосы 40 МГц устройствами 802.11n, их работе могут мешать существующие 802.11b/g точки доступа, что приведет к снижению производительности всего сегмента сети.

Режимы работы 802.11n

Существуют три режима работы 802.11n: HT, Non-HT и HT Mixed.

Рассмотрим более подробно каждый из режимов.

Режим с высокой пропускной способностью HT (High Throughput)

Точки доступа 802.11n используют режим High Throughput (HT), известный также как "чистый" режим (Greenfield-режим), который предполагает отсутствие поблизости (в зоне покрытия) работающих устройств 802.11b/g, использующих ту же полосу частот. Если же такие устройства существуют в зоне покрытия, то они не смогут общаться с точкой доступа 802.11n. Таким образом, в этом режиме разрешены к использованию только клиенты 802.11n, что позволит воспользоваться преимуществами повышенной скорости и увеличенной дальностью передачи данных, обеспечиваемыми стандартом 802.11n.

Режим с невысокой пропускной способностью Non-HT

Точка доступа 802.11n с использованием режима Non-HT (известный также как наследуемый режим), отправляет все кадры в формате 802.11b/g, чтобы устаревшие станции смогли понять их. В этом режиме точка доступа должна использовать ширину каналов 20 МГц и при этом не будет использовать преимущества стандарта 802.11n. Для обеспечения обратной совместимости все устройства должны поддерживать этот режим. Нужно учитывать, что точка доступа 802.11n с использованием режима Non-HT не будет обеспечивать высокую производительность. При использовании этого режима передача данных осуществляется со скоростью, поддерживаемой самым медленным устройством.

Смешанный режим с высокой пропускной способностью HT Mixed

Смешанный режим HT Mixed будет наиболее распространенным режимом для точек доступа 802.11n в ближайшие несколько лет. В этом режиме, усовершенствования стандарта 802.11n могут быть использованы одновременно с существующими станциями 802.11b/g. Режим HT Mixed обеспечит обратную совместимость устройств, но устройства 802.11n получат уменьшение пропускной способности. В этом режиме точка доступа 802.11n распознает наличие старых клиентов и будет использовать более низкую скорость передачи данных, пока старое устройство осуществляет прием-передачу данных.

Таким образом, при практическом применении улучшений стандарта 802.11n, преимущества могут быть достигнуты в полной мере только при условии, что клиенты 802.11b/g отсутствуют и беспроводная сеть работает в "чистом" режиме HT.

Безопасность

Стандарт 802.11n использует те же меры безопасности 802.11i (WPA2), используемые ранее на устройствах стандарта 802.11a/g. VPN может быть использован для защиты кадров 802.11n, несмотря на то, что VPN-шлюзам необходима поддержка более высокой пропускной способности для обеспечения защиты.

Новая система предотвращения вторжений (IPS, Intrusion Prevention System) в беспроводной сети работает также как и ранее и способна обнаруживать и реагировать на небезопасные (Rogue AP) точки доступа 802.11n. Обращаем ваше внимание, что возможно обнаружение устройств 802.11n, только работающих в режимах Non-HT или Mixed HT, но не в "чистом" режиме HT (Greenfield).

IEEE 802.11ac

Стандарт 802.11ac принят в 2014 году, а устройства с его поддержкой, как водится, появились раньше. Как многие знают, в нем значительно увеличена скорость передачи данных (теоретически, до 6.7 Гбит/с!). Достигается это благодаря увеличенной ширине каналов (до 160 МГц), количеству потоков (до 8) и новой улучшенной модуляции (256-QAM). Конечно, не все новшества стандарта стали доступны сразу. Реализация на точках доступа и клиентских станциях происходит поэтапно. Первая волна (wave 1) устройств поддерживает каналы 80 МГц, модуляцию 256-QAM и два-три пространственных потока. Корпоративные точки доступа второй волны (wave 2), появившиеся в 2015 году, поддерживают ширину канала до 80 МГц и до четырех пространственных потоков, что дает скорость 1.7 Гбит/с. Также, для второй волны устройств добавлена поддержка многопользовательского пространственного мультиплексирования MultiUser-MIMO (MU-MIMO). Эта технология позволяет передать несколько потоков информации нескольким пользователям одновременно (ага, точка доступа превращается в некий беспроводной коммутатор). Сейчас практически любое новое устройство с беспроводной Wi-Fi сетью поддерживает как минимум первую волну стандарта.

При подборе оборудования, планировании беспроводных сетей, мы обратили внимание, что, немногие заказчики ориентируются на поддержку нового стандарта, либо вообще просят поставить старое оборудование предыдущих поколений. У некоторых это продиктовано корпоративными стандартами, внутренними требованиями, а кто-то просто не знает особенностей или не видит плюсов использования. Вот мы и решили написать коротко об основных «фишках» стандарта.

Требования к устройствам

Стандарт предусматривает поддержку каналов до 160 МГц, количество пространственных потоков до 8 и т.п. Минимальные требования гораздо скромнее. Если у вас есть клиентское устройство с поддержкой 802.11ac, то в обязательном порядке оно поддерживает (кроме стандартных параметров: модуляция, кодирование и т.д.):

-Каналы 80МГц

-Один пространственный поток

-Агрегацию фреймов

Остальные нововведения (например, модуляция 256-QAM, Beamforming, MU-MIMO) не являются обязательными.

Формирование диаграммы направленности

Формирование диаграммы направленности (transmit beamforming, TxBF) позволяет сфокусировать в сторону клиента передаваемый сигнал, улучшая таким образом downlink (канал от точки доступа к клиенту). Чем лучше сигнал (выше значение SNR) тем на большей скорости мы можем передать данные на клиента. Технология актуальна для точек доступа с всенаправленными антеннами. Чтобы откалибровать передачу сигнала для массива антенн, устройство-передатчик (обычно, точка доступа) должно предварительно получить данные от приемника (клиентская станция). Это может быть либо косвенная информация (служебные кадры), либо специальные калибровочные кадры (требуется поддержка их генерации на приемнике). Первый вариант получил название неявное формирование диаграммы направленности (implicit beamforming), второй – явное формирование диаграммы направленности (explicit beamforming). Попытка реализовать explicit beamforming была в стандарте 802.11n, однако технология не получила распространение. Некоторые производители реализовали собственный вариант с поддержкой implicit beamforming для устройств стандартов 802.11 a/g/n. У Ruckus для этого используется технология BeamFlex. Нужно уточнить, что это более комплексная технология, включающая в том числе и beamforming. В точках доступа Ruckus используются адаптивные антенны, которые обеспечивают помимо beamforming’а дополнительную обработку входящего сигнала, отстройку от источников помех и др. У Cisco тоже есть своя технология beamforming’а – ClientLink. Остановимся на ней немного более подробно.

Cisco ClientLink

В случае ClientLink, за формирование диаграммы направленности отвечает только точка доступа, поддержка на клиенте не требуется. У Cisco данная технология реализована на аппаратном уровне. Она позволяет увеличить уровень сигнала на 3-5 dB и оптимально работает со статичными клиентами.

ClientLink 1.0 для калибровки использует технологию Maximal Ratio Combining (MRC). В MRC принятый на нескольких антеннах сигнал смещается по фазе, а затем складывается, чтобы получить итоговый входящий сигнал с бОльшим SNR. В ClientLink 1.0 на основе алгоритма MRC точка доступа запоминает значения фазы и амплитуды для каждого клиента 802.11a/g. Далее точка доступа формирует исходящий сигнал с дополнительных антенн к клиенту, исходя из этих данных, чтобы получить улучшение сигнала на клиенте. Это и логично: если мы отправим сигнал в таком же виде, как его и получили, это позволит сфокусировать его в нужном нам направлении, так как в обратную сторону сигнал пойдёт тем же путём. Действует это автоматически для первых 15 клиентов, подключившихся к точке доступа.

ClientLink 2.0 поддерживает формирование диаграммы направленности для 802.11n клиентов с 1-3 пространственными потоками. Сигнал от точки доступа к клиенту формируется со всех антенн. На каждую антенну передаётся суперпозиция пространственных потоков. Схема вычисления весовых коэффициентов аналогична ClientLink 1.0. Поддерживается до 128 клиентов.

В последней версии технологии (ClientLink 3.0) была добавлена поддержка клиентов 802.11ac. Поддерживаются каналы 80 МГц, модуляция 256-QAM и до трёх пространственных потоков. Обеспечивается обслуживание до 128 клиентов. ClientLink 3.0 помимо стандартной схемы работы (как в предыдущих версиях), также работает совместно со стандартным explicit beamforming в 802.11ac, о котором ниже.

802.11ac Explicit BeamForming

В 802.11ac реализован explicit beamforming уже непосредственно в стандарте. Планируется что он будет поддерживаться массово на клиентах, однако, как уже было сказано, его наличие не является обязательным. 802.11ac explicit beamforming работает только для 11ac клиентов и не совместим с другими стандартами. При этом сам клиент также должен поддерживать explicit beamforming, так как именно он будет сообщать точке доступа о том, как стоит ему передавать информацию.

Процесс калибровки выглядит следующим образом:

1. Точка доступа формирует и отправляет специализированный кадр (Null Data Packet Announcement – NDPA) для оповещения клиента. В нем содержится информация о количестве передатчиков, количестве потоков и другие сопутствующие данные.

2. Далее клиенту отправляется Null Data Packet (NDP). Это делается для того, чтобы клиент, анализируя информацию в заголовках на физическом уровне, смог сформировать отчет о полученном сигнале и отправить его обратно точке доступа.

3. Клиент анализирует полученный (на всех антеннах) сигнал по каждой поднесущей и формирует матрицу направленности с определенной амплитудой и фазой. Данная матрица занимает достаточно большой объем (особенно с учетом ширины каналов в 11ac), поэтому ответ отправляется в сжатом виде.

4. Получатель (точка доступа) на основании полученной от клиента информации формирует диаграмму направленности.

Формирование диаграммы направленности происходит следующим образом: каждая антенная начинает передавать некую суперпозицию всех пространственных потоков с определёнными коэффициентами (фаза, амплитуда). Причём коэффициенты для каждого потока на каждой антенне будут свои.

Стоит обратить внимание, что реальный выигрыш от технологии формирования диаграммы направленности мы получаем только в том случае, если количество антенн на передачу у нас превосходит количество передаваемых пространственных потоков.

Для многопользовательской передачи (multi-user beamforming), процесс схожий, однако калибровка происходит для каждого клиента в отдельности.

Продвинутое MIMO

Multi-user MIMO (MU-MIMO) это одно из ключевых новшеств в 802.11ac. Оно позволяет разделить пространственные потоки и организовать одновременную передачу данных нескольким клиентам (вместо одновременной передачи только одному клиенту для обычного MIMO). Работает MU-MIMO на устройствах wave 2 и действует только для downlink соединения (от точки доступа к клиенту). Предусмотрено обслуживание не более четырёх пользователей. Текущие точки доступа поддерживают обслуживание не более трёх пользователей в режиме MU-MIMO.

Для реализации данной функции потребовалось изменить формат кадра на физическом уровне, добавив специализированные заголовки для согласования параметров с несколькими пользователями. Кроме того, появилось разделение кадра на получателей (кадр адресованный всем, кадр для конкретного клиента).

Кстати, в 802.11n (HT) есть различные форматы кадров (и режимы работы точки доступа): mixed – для совместимости с 802.11a/g/n устройствами или greenfield для работы только 11n устройств. В 802.11ac используется один универсальный формат, включающий заголовки 802.11a/ac.

Как же передать информацию одновременно всем пользователям? Здесь нам помогают свойства beamforming-а. После калибровки, каждый поток (или несколько потоков) отправляется каждому пользователю со своей диаграммой направленности. Для предотвращения интерференции передаваемого сигнала при многопользовательской передаче, диаграмма направленности для каждого клиента строится таким образом, что сигнал для соседних клиентов приходит в противофазе. Это важно, так как клиент должен «слышать» только тот пространственный поток, который адресован именно ему. Иначе пространственный потоки будут друг на друга влиять, и клиент ничего не разберёт. Логично предположить, что технология не работает, если клиенты находятся на достаточно близком расстоянии друг к другу (хотя для помещения из-за переотражений вопрос «близкого нахождения» клиентов друг к другу достаточно непростой).

Точная калибровка крайне важна для такой передачи, поэтому она происходит в несколько раз чаще, чем для single-user передачи. Но, как мы помним, этот механизм требует передачи достаточно большого количества информации, что увеличивает утилизацию канала.

Точка доступа должна анализировать, какой режим лучше использовать для передачи. На данный момент, технология скорее актуальна для работы с несколькими клиентами, поддерживающими один поток. Для других случаев проще будет использовать обычный режим MIMO и передать несколько потоков с определенной диаграммой направленности по очереди. Так как точки доступа с поддержкой MU-MIMO появились на рынке относительно недавно, сложно сказать насколько массовое распространение получит данная технология.

Особенности доступа к среде и использования каналов

Одним из ключевых новшеств стандарта 802.11ac является появление более широких каналов. В 802.11a/g используются каналы шириной 20 Мгц, в 802.11n появились каналы 40 Мгц. Однако, использование каналов шириной 40Мгц не является обязательным. Более того для диапазона 2.4 ГГц некоторые производители беспроводного оборудования даже запретили использование каналов 40 Мгц на своих устройствах, т.к. слишком мало свободных частот. Новый стандарт работает в диапазоне 5 ГГц, который менее загружен и имеет больше свободных частот. Новые более широкие каналы позволяют передать больше информации в единицу времени и экономить энергию батареи на устройствах.

Итак, с одной стороны появились новые форматы каналов – шириной 80, 160, 80+80 Мгц. С другой стороны, конечно, таких широких каналов в диапазоне мы получим гораздо меньше по сравнению с каналами 20-40 МГц для 802.11n. Кроме того, в каждом регуляторном домене есть свои ограничения по использованию частот.

Вариации с доступными каналами в разных странах\регионах.